AI in academia
Article (on
Full Paper (PDF)


ai in academia
natural language processing
generative ai
ethical considerations

How to Cite

Pinzolits, R. (2023). AI in academia: An overview of selected tools and their areas of application. MAP Education and Humanities, 4, 37–50.


As a result of OpenAI's ChatGPT, there has been increasing interest in AI and web-based natural language processing (NLP), including in academia. In this article, we provide an overview of the tools that can be used for academic purposes. The overview was conducted from the perspective of a university educator and was intended to guide educators in higher education on emerging AI technologies. The tools discussed ranged from searching the literature and attributions to peer-reviewed articles, scientific writing, and academic writing and editing. The objective is to foster an informed approach to the integration of AI tools in academic settings, ensuring that educators are well-equipped to leverage these technologies to enhance the quality and output of academic work.
Article (on
Full Paper (PDF)


Akgun, S., & Greenhow, C. (2021). Artificial Intelligence in Education: Addressing Ethical Challenges in K-12 Settings. Ai and Ethics.

Alharbi, W. (2023). AI in the Foreign Language Classroom: A Pedagogical Overview of Automated Writing Assistance Tools. Education Research International.

Baker, R., & Siemens, G. (2014). Educational data mining and learning analytics (pp. 253–272).

Baker, T., Smith with Nandra Anissa, L., Sheehan, K., Ward, K., Waters, A., Berditchevskaia, A., Van Den Berg, C., Campbell, N., Candsell, O., Casasbuenas, J., Cinnamon, J., Copeland, E., Duffy, E., Hannon, C., John, J., Grant, J., Klinger, J., Latham, M., Macken, C., … Ward-Dyer, G. (2019). Educ-AI-tion Rebooted? Exploring the future of artificial intelligence in schools and colleges.

Barnett, A. (2023, May 31). Scientific fraud is rising, and automated systems won’t stop it. We need research detectives. The Conversation.

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation Learning: A Review and New Perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35, 1798–1828.

Bingley, W. J., Curtis, C., Lockey, S., Bialkowski, A., Gillespie, N., Haslam, S. A., Ko, R. K. L., Steffens, N., Wiles, J., & Worthy, P. (2023). Where is the human in human-centered AI? Insights from developer priorities and user experiences. Computers in Human Behavior, 141, 107617.

Bostrom, N. (2014). Superintelligence: Paths, dangers, strategies. Oxford University Press.

Brainard, J. (2023). New tools show promise for tackling paper mills. Science (New York, N.Y.), 380(6645), 568–569.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., … Amodei, D. (2020). Language Models are Few-Shot Learners.

Brynjolfsson, E., & Mitchell, T. (2017). What can machine learning do? Workforce implications. Science, 358, 1530–1534.

Buchanan, B. G. (2005). A (Very) Brief History of Artificial Intelligence. The AI Magazine, 26(4).

Buchanan, B., & Shortliffe, E. (1984). Rule-based Expert System – The MYCIN Experiments of the Stanford Heuristic Programming Project. In SERBIULA (sistema Librum 2.0).

Chollet, F. (2019). On the Measure of Intelligence.

Chounta, I.-A., Bardone, E., Raudsep, A., & Pedaste, M. (2021). Exploring Teachers’ Perceptions of Artificial Intelligence as a Tool to Support Their Practice in Estonian K-12 Education. International Journal of Artificial Intelligence in Education.

Condello, I., Santarpino, G., Nasso, G., Moscarelli, M., Fiore, F., & Speziale, G. (2021). Management Algorithms and Artificial Intelligence Systems for Cardiopulmonary Bypass. Perfusion.

Crevier, D. (1993). AI: the tumultuous history of the search for artificial intelligence. Choice Reviews Online, 31(03), 31–1555-31–1555.

Crompton, H., & Song, D. (2021). The Potential of Artificial Intelligence in Higher Education. Revista Virtual Universidad Católica Del Norte.

Ducao, A., Koen, I., Guo, Z., Frank, J., Willard, C., & Kam, J. (2020). Multimer: Modeling Neurophysiological Experience in Public Urban Space. International Journal of Community Well-Being.

Ghaban, W., & Hendley, R. J. (2019). How Different Personalities Benefit From Gamification. Interacting With Computers.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

Goretzko, D., & Israel, L. (2022). Pitfalls of Machine Learning-Based Personnel Selection. Journal of Personnel Psychology.

Holmes, W., Porayska-Pomsta, K., Holstein, K., Sutherland, E., Baker, T., Shum, S. B., Santos, O. C., Rodrigo, M. T., Cukurova, M., Bittencourt, I. I., & Koedinger, K. R. (2021). Ethics of AI in Education: Towards a Community-Wide Framework. International Journal of Artificial Intelligence in Education, 32(3), 504–526.

Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260.

Kitchin, R. (2014). Big Data, new epistemologies and paradigm shifts. Big Data & Society, 1(1), 2053951714528481.

Kurzweil, R. (2014). The Singularity is Near. In R. L. Sandler (Ed.), Ethics and Emerging Technologies (pp. 393–406). Palgrave Macmillan UK.

Larson, E. B. (2021). The Myth of Artificial Intelligence: Why Computers Can’t Think the Way We Do. Perspectives on Science and Christian Faith.

Larsson, S. (2020). On the Governance of Artificial Intelligence through Ethics Guidelines. Asian Journal of Law and Society, 7(3), 437–451.

Laurent, C. de Saint. (2018). In Defence of Machine Learning: Debunking the Myths of Artificial Intelligence. Europe’s Journal of Psychology.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

Leszkiewicz, A., Hörmann, T., & Krafft, M. (2022). Smart Business and the Social Value of AI.

Liem, C. C. S., Langer, M., Demetriou, A. M., Hiemstra, A. M. F., Wicaksana, A. S., Born, M. Ph., & König, C. J. (2018). Psychology Meets Machine Learning: Interdisciplinary Perspectives on Algorithmic Job Candidate Screening.

Lin, X.-F., Chen, L., Chan, K. K., Peng, S.-Q., Chen, X., Xie, S., Liu, J., & Hu, Q. (2022). Teachers’ Perceptions of Teaching Sustainable Artificial Intelligence: A Design Frame Perspective. Sustainability.

Liverpool, L. (2023). AI intensifies fight against ‘paper mills’ that churn out fake research. Nature, 618(7964), 222–223.

Manning, C. D., & Schütze, H. (1999). Foundations of statistical natural language processing. The MIT Press.

McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence: August 31, 1955. AI Magazine, 27(4).

McCorduck, P. (2004). Machines Who Think: A Personal Inquiry into the History and Prospects of Artificial Intelligence. A K Peters/CRC Press.

Nath, S., Marie, A., Ellershaw, S., Korot, E., & Keane, P. A. (2022). New Meaning for NLP: The Trials and Tribulations of Natural Language Processing With GPT-3 in Ophthalmology. British Journal of Ophthalmology.

Nazaretsky, T., Ariely, M., Cukurova, M., & Alexandron, G. (2022). Teachers’ Trust In AI‐powered Educational Technology and a Professional Development Program to Improve It. British Journal of Educational Technology.

Ng, D. T. K., Leung, J. K. L., Su, J., Ng, R. C. W., & Chu, S. K. W. (2023). Teachers’ AI Digital Competencies and Twenty-First Century Skills in the Post-Pandemic World. Educational Technology Research and Development.

Niemi, H. (2021). AI in Learning. Journal of Pacific Rim Psychology.

Park, W., & Park, J.-B. (2018). History and Application of Artificial Neural Networks in Dentistry. European Journal of Dentistry.

Prunkl, C. E. A., Ashurst, C., Anderljung, M., Webb, H., Leike, J., & Dafoe, A. (2021). Institutionalizing ethics in AI through broader impact requirements. Nature Machine Intelligence, 3(2), 104–110.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language Models are Unsupervised Multitask Learners.

Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 1(5), 206–215.

Russell, S. (2020). Human Compatible. Artificial Intelligence and the Problem of Control. Penguin Books.

Russell, S. J., & Norvik, P. (Eds.). (2010). Artificial Intelligence A Modern Approach. Pearson.

Schachner, T., Keller, R., & Wangenheim, F. von. (2020). Artificial Intelligence-Based Conversational Agents for Chronic Conditions: Systematic Literature Review. Journal of Medical Internet Research.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117.

Schmölz, A. (2020). Die Conditio Humana im digitalen Zeitalter. Medien Pädagogik: Zeitschrift Für Theorie Und Praxis Der Medienbildung, 208–234.

Searle, J. R. (1980). Minds, brains, and programs. Behavioral and Brain Sciences, 3(3), 417–424. 10.1017/S0140525X00005756

Shneiderman, B. (2020). Human-Centered Artificial Intelligence: Three Fresh Ideas. AIS Transactions on Human-Computer Interaction, 109–124.

Sobel, D. M., & Kushnir, T. (2006). The Importance of Decision Making in Causal Learning From Interventions. Memory & Cognition.

Süße, T., Kobert, M., & Kries, C. (2021). Antecedents of Constructive Human-Ai Collaboration: An Exploration of Human Actors’ Key Competencies.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning. An Introduction (2nd. Edition).

Topali, P., Ortega-Arranz, A., Dimitriadis, Y., Martínez-Monés, A., Villagrá-Sobrino, S., & Asensio-Pérez, J. I. (2019). “Error 404- Struggling Learners Not Found” Exploring the Behavior of MOOC Learners.

Turing, A. M. (1937). On Computable Numbers, with an Application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, s2-42(1), 230–265.

Vapnik, V. N. (1998). The Nature of Statistical Learning Theory. Springer.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł. ukasz, & Polosukhin, I. (2017). Attention is All you Need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances in Neural Information Processing Systems (Vol. 30). Curran Associates, Inc.

Vinge, V. (1993). The Coming Technological Singularity. Whole Earth Review, 81, 88–95.

Weidener, L., & Fischer, M. (2023). Artificial Intelligence Teaching as Part of Medical Education: Qualitative Analysis of Expert Interviews. Jmir Medical Education.

Wiener Manifest für digitalen Humanismus. (2019).

Xu, W. (2019). Toward Human-Centered AI. Interactions.

Zou, J., & Schiebinger, L. (2018). AI can be sexist and racist — it’s time to make it fair. Nature, 559, 324–326.