Abstract
As a result of OpenAI's ChatGPT, there has been increasing interest in AI and web-based natural language processing (NLP), including in academia. In this article, we provide an overview of the tools that can be used for academic purposes. The overview was conducted from the perspective of a university educator and was intended to guide educators in higher education on emerging AI technologies. The tools discussed ranged from searching the literature and attributions to peer-reviewed articles, scientific writing, and academic writing and editing. The objective is to foster an informed approach to the integration of AI tools in academic settings, ensuring that educators are well-equipped to leverage these technologies to enhance the quality and output of academic work.
References
Akgun, S., & Greenhow, C. (2021). Artificial Intelligence in Education: Addressing Ethical Challenges in K-12 Settings. Ai and Ethics. https://doi.org/10.1007/s43681-021-00096-7
Alharbi, W. (2023). AI in the Foreign Language Classroom: A Pedagogical Overview of Automated Writing Assistance Tools. Education Research International. https://doi.org/10.1155/2023/4253331
Baker, R., & Siemens, G. (2014). Educational data mining and learning analytics (pp. 253–272). https://doi.org/10.1017/CBO9781139519526.016
Baker, T., Smith with Nandra Anissa, L., Sheehan, K., Ward, K., Waters, A., Berditchevskaia, A., Van Den Berg, C., Campbell, N., Candsell, O., Casasbuenas, J., Cinnamon, J., Copeland, E., Duffy, E., Hannon, C., John, J., Grant, J., Klinger, J., Latham, M., Macken, C., … Ward-Dyer, G. (2019). Educ-AI-tion Rebooted? Exploring the future of artificial intelligence in schools and colleges. www.nesta.org.uk
Barnett, A. (2023, May 31). Scientific fraud is rising, and automated systems won’t stop it. We need research detectives. The Conversation. https://theconversation.com/scientific-fraud-is-rising-and-automated-systems-wont-stop-it-we-need-research-detectives-206235?utm_source=substack&utm_medium=email
Bengio, Y., Courville, A., & Vincent, P. (2013). Representation Learning: A Review and New Perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35, 1798–1828. https://doi.org/10.1109/TPAMI.2013.50
Bingley, W. J., Curtis, C., Lockey, S., Bialkowski, A., Gillespie, N., Haslam, S. A., Ko, R. K. L., Steffens, N., Wiles, J., & Worthy, P. (2023). Where is the human in human-centered AI? Insights from developer priorities and user experiences. Computers in Human Behavior, 141, 107617. https://doi.org/10.1016/J.CHB.2022.107617
Bostrom, N. (2014). Superintelligence: Paths, dangers, strategies. Oxford University Press.
Brainard, J. (2023). New tools show promise for tackling paper mills. Science (New York, N.Y.), 380(6645), 568–569. https://doi.org/10.1126/science.adi6513
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., … Amodei, D. (2020). Language Models are Few-Shot Learners.
Brynjolfsson, E., & Mitchell, T. (2017). What can machine learning do? Workforce implications. Science, 358, 1530–1534. https://doi.org/10.1126/science.aap8062
Buchanan, B. G. (2005). A (Very) Brief History of Artificial Intelligence. The AI Magazine, 26(4). https://doi.org/https://doi.org/10.1609/aimag.v26i4.1848
Buchanan, B., & Shortliffe, E. (1984). Rule-based Expert System – The MYCIN Experiments of the Stanford Heuristic Programming Project. In SERBIULA (sistema Librum 2.0).
Chollet, F. (2019). On the Measure of Intelligence. https://doi.org/10.48550/arxiv.1911.01547
Chounta, I.-A., Bardone, E., Raudsep, A., & Pedaste, M. (2021). Exploring Teachers’ Perceptions of Artificial Intelligence as a Tool to Support Their Practice in Estonian K-12 Education. International Journal of Artificial Intelligence in Education. https://doi.org/10.1007/s40593-021-00243-5
Condello, I., Santarpino, G., Nasso, G., Moscarelli, M., Fiore, F., & Speziale, G. (2021). Management Algorithms and Artificial Intelligence Systems for Cardiopulmonary Bypass. Perfusion. https://doi.org/10.1177/02676591211030762
Crevier, D. (1993). AI: the tumultuous history of the search for artificial intelligence. Choice Reviews Online, 31(03), 31–1555-31–1555. https://doi.org/10.5860/choice.31-1555
Crompton, H., & Song, D. (2021). The Potential of Artificial Intelligence in Higher Education. Revista Virtual Universidad Católica Del Norte. https://doi.org/10.35575/rvucn.n62a1
Ducao, A., Koen, I., Guo, Z., Frank, J., Willard, C., & Kam, J. (2020). Multimer: Modeling Neurophysiological Experience in Public Urban Space. International Journal of Community Well-Being. https://doi.org/10.1007/s42413-020-00082-7
Ghaban, W., & Hendley, R. J. (2019). How Different Personalities Benefit From Gamification. Interacting With Computers. https://doi.org/10.1093/iwc/iwz009
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
Goretzko, D., & Israel, L. (2022). Pitfalls of Machine Learning-Based Personnel Selection. Journal of Personnel Psychology. https://doi.org/10.1027/1866-5888/a000287
Holmes, W., Porayska-Pomsta, K., Holstein, K., Sutherland, E., Baker, T., Shum, S. B., Santos, O. C., Rodrigo, M. T., Cukurova, M., Bittencourt, I. I., & Koedinger, K. R. (2021). Ethics of AI in Education: Towards a Community-Wide Framework. International Journal of Artificial Intelligence in Education, 32(3), 504–526. https://doi.org/10.1007/s40593-021-00239-1
Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260. https://doi.org/10.1126/science.aaa8415
Kitchin, R. (2014). Big Data, new epistemologies and paradigm shifts. Big Data & Society, 1(1), 2053951714528481. https://doi.org/10.1177/2053951714528481
Kurzweil, R. (2014). The Singularity is Near. In R. L. Sandler (Ed.), Ethics and Emerging Technologies (pp. 393–406). Palgrave Macmillan UK. https://doi.org/10.1057/9781137349088_26
Larson, E. B. (2021). The Myth of Artificial Intelligence: Why Computers Can’t Think the Way We Do. Perspectives on Science and Christian Faith. https://doi.org/10.56315/pscf12-21larson
Larsson, S. (2020). On the Governance of Artificial Intelligence through Ethics Guidelines. Asian Journal of Law and Society, 7(3), 437–451. https://doi.org/10.1017/als.2020.19
Laurent, C. de Saint. (2018). In Defence of Machine Learning: Debunking the Myths of Artificial Intelligence. Europe’s Journal of Psychology. https://doi.org/10.5964/ejop.v14i4.1823
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
Leszkiewicz, A., Hörmann, T., & Krafft, M. (2022). Smart Business and the Social Value of AI. https://doi.org/10.1108/s1877-636120220000028004
Liem, C. C. S., Langer, M., Demetriou, A. M., Hiemstra, A. M. F., Wicaksana, A. S., Born, M. Ph., & König, C. J. (2018). Psychology Meets Machine Learning: Interdisciplinary Perspectives on Algorithmic Job Candidate Screening. https://doi.org/10.1007/978-3-319-98131-4_9
Lin, X.-F., Chen, L., Chan, K. K., Peng, S.-Q., Chen, X., Xie, S., Liu, J., & Hu, Q. (2022). Teachers’ Perceptions of Teaching Sustainable Artificial Intelligence: A Design Frame Perspective. Sustainability. https://doi.org/10.3390/su14137811
Liverpool, L. (2023). AI intensifies fight against ‘paper mills’ that churn out fake research. Nature, 618(7964), 222–223.
Manning, C. D., & Schütze, H. (1999). Foundations of statistical natural language processing. The MIT Press. https://go.exlibris.link/Cm6fZ3Ky
McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence: August 31, 1955. AI Magazine, 27(4).
McCorduck, P. (2004). Machines Who Think: A Personal Inquiry into the History and Prospects of Artificial Intelligence. A K Peters/CRC Press. https://doi.org/https://doi.org/10.1201/9780429258985
Nath, S., Marie, A., Ellershaw, S., Korot, E., & Keane, P. A. (2022). New Meaning for NLP: The Trials and Tribulations of Natural Language Processing With GPT-3 in Ophthalmology. British Journal of Ophthalmology. https://doi.org/10.1136/bjophthalmol-2022-321141
Nazaretsky, T., Ariely, M., Cukurova, M., & Alexandron, G. (2022). Teachers’ Trust In AI‐powered Educational Technology and a Professional Development Program to Improve It. British Journal of Educational Technology. https://doi.org/10.1111/bjet.13232
Ng, D. T. K., Leung, J. K. L., Su, J., Ng, R. C. W., & Chu, S. K. W. (2023). Teachers’ AI Digital Competencies and Twenty-First Century Skills in the Post-Pandemic World. Educational Technology Research and Development. https://doi.org/10.1007/s11423-023-10203-6
Niemi, H. (2021). AI in Learning. Journal of Pacific Rim Psychology. https://doi.org/10.1177/18344909211038105
Park, W., & Park, J.-B. (2018). History and Application of Artificial Neural Networks in Dentistry. European Journal of Dentistry. https://doi.org/10.4103/ejd.ejd_325_18
Prunkl, C. E. A., Ashurst, C., Anderljung, M., Webb, H., Leike, J., & Dafoe, A. (2021). Institutionalizing ethics in AI through broader impact requirements. Nature Machine Intelligence, 3(2), 104–110. https://doi.org/10.1038/s42256-021-00298-y
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language Models are Unsupervised Multitask Learners.
Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 1(5), 206–215. https://doi.org/10.1038/s42256-019-0048-x
Russell, S. (2020). Human Compatible. Artificial Intelligence and the Problem of Control. Penguin Books.
Russell, S. J., & Norvik, P. (Eds.). (2010). Artificial Intelligence A Modern Approach. Pearson.
Schachner, T., Keller, R., & Wangenheim, F. von. (2020). Artificial Intelligence-Based Conversational Agents for Chronic Conditions: Systematic Literature Review. Journal of Medical Internet Research. https://doi.org/10.2196/20701
Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117. https://doi.org/https://doi.org/10.1016/j.neunet.2014.09.003
Schmölz, A. (2020). Die Conditio Humana im digitalen Zeitalter. Medien Pädagogik: Zeitschrift Für Theorie Und Praxis Der Medienbildung, 208–234. https://doi.org/10.21240/mpaed/00/2020.11.13.x
Searle, J. R. (1980). Minds, brains, and programs. Behavioral and Brain Sciences, 3(3), 417–424. https://doi.org/DOI: 10.1017/S0140525X00005756
Shneiderman, B. (2020). Human-Centered Artificial Intelligence: Three Fresh Ideas. AIS Transactions on Human-Computer Interaction, 109–124. https://doi.org/10.17705/1thci.00131
Sobel, D. M., & Kushnir, T. (2006). The Importance of Decision Making in Causal Learning From Interventions. Memory & Cognition. https://doi.org/10.3758/bf03193418
Süße, T., Kobert, M., & Kries, C. (2021). Antecedents of Constructive Human-Ai Collaboration: An Exploration of Human Actors’ Key Competencies. https://doi.org/10.1007/978-3-030-85969-5_10
Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning. An Introduction (2nd. Edition).
Topali, P., Ortega-Arranz, A., Dimitriadis, Y., Martínez-Monés, A., Villagrá-Sobrino, S., & Asensio-Pérez, J. I. (2019). “Error 404- Struggling Learners Not Found” Exploring the Behavior of MOOC Learners. https://doi.org/10.1007/978-3-030-29736-7_56
Turing, A. M. (1937). On Computable Numbers, with an Application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, s2-42(1), 230–265. https://doi.org/https://doi.org/10.1112/plms/s2-42.1.230
Vapnik, V. N. (1998). The Nature of Statistical Learning Theory. Springer. https://doi.org/10.1007/978-1-4757-2440-0
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł. ukasz, & Polosukhin, I. (2017). Attention is All you Need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances in Neural Information Processing Systems (Vol. 30). Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
Vinge, V. (1993). The Coming Technological Singularity. Whole Earth Review, 81, 88–95. https://doi.org/10.1002/9781118555927.ch35
Weidener, L., & Fischer, M. (2023). Artificial Intelligence Teaching as Part of Medical Education: Qualitative Analysis of Expert Interviews. Jmir Medical Education. https://doi.org/10.2196/46428
Wiener Manifest für digitalen Humanismus. (2019).
Xu, W. (2019). Toward Human-Centered AI. Interactions. https://doi.org/10.1145/3328485
Zou, J., & Schiebinger, L. (2018). AI can be sexist and racist — it’s time to make it fair. Nature, 559, 324–326. https://doi.org/10.1038/d41586-018-05707-8