Trade Protection and Inflation Dynamics: Evidence of Policy Endogeneity from a Panel VAR Analysis
Article (on mapub.org)
Full Paper (PDF)

Keywords

Trade Policy
Inflation
Panel VAR
Policy Endogeneity
Granger Causaility
Tariffs
Impulse Response Function
Trade Protection
Macroeconomic Policy

How to Cite

Sinković, D. (2025). Trade Protection and Inflation Dynamics: Evidence of Policy Endogeneity from a Panel VAR Analysis. MAP Social Sciences, 6, 77–90. https://doi.org/10.53880/2744-2454.2025.6.77

Abstract

This research examines the interactive relationship between trade protection and inflation using analysis of 9,520 country-year observations. Employing Panel Vector Autoregression (PVAR), Granger causality tests, impulse response functions and policy simulations, a strong evidence of policy endogeneity in the tariff-inflation relationship is found. The key finding reveal an asymmetric causal effect: inflation changes strongly predict future tariff adjustments (χ² = 387.529, p < 0.001), while tariffs do not predict inflation changes (χ² = 6.708, p = 0.082). The observed correlation between protection and price levels results from systematic policy responses rather than direct causal effects of trade policy. The impulse response analysis shows that higher tariffs cause sustained price increases lasting 3 to 4 periods, whereas inflationary shocks lead to immediate tariff reductions. This creates a self-regulating mechanism where protectionist measures eventually diminish through inflation effects. Simulation results indicate that a 10 percentage point tariff increase results in an average of 0.8 percentage points additional inflation, although outcomes vary significantly across countries. These findings support current trade policy debates by demonstrating that moderate tariff hikes incur notable macroeconomic costs, yet political economy forces generally favor trade liberalization following inflationary episodes.

https://doi.org/10.53880/2744-2454.2025.6.77
Article (on mapub.org)
Full Paper (PDF)

References

Abrigo, M. R. M., & Love, I. (2016). Estimation of Panel Vector Autoregression in Stata. The Stata Journal: Promoting Communications on Statistics and Stata, 16(3), 778–804. https://doi.org/10.1177/1536867x1601600314

Amiti, M., Redding, S. J., & Weinstein, D. E. (2019). The Impact of the 2018 Tariffs on Prices and Welfare. Journal of Economic Perspectives, 33(4), 187–210. https://doi.org/10.1257/ jep.33.4.187

Azzimonti-Renzo, M., Edwards, Z., Waddell, S. R., & Wyckoff, A. (2025). Tariffs: Estimating the Economic Impact of the 2025 Measures and Proposals, Federal Reserve Bank of Richmond Economic Brief No. 25-12.

Baltagi, B. H. (2014). Panel data and difference-in-differences estimation. Encyclopedia of Health Economics, 425-433.

Baltagi, B. H., Jung, B. C., & Song, S. H. (2010). Testing for heteroskedasticity and serial correlation in a random effects panel data model. Journal of Econometrics, 154(2), 122–124. https://doi.org/https://doi.org/10.1016/j.jeconom.2009.04.009

Bandyopadhyay, S., Ferraro, D., & Bower, L. O. V. (2025). How do tariffs impact the US economy? Economics Letters, 254, 112406. https://doi.org/10.1016/ j.econlet.2025.112406

Barbiero, O., & Stein, H. (2025). The Impact of Tariffs on Inflation The Impact of Tariffs on Inflation., Federal Reserve Bank of Boston, Current Policy Perspective 25-2.

Baslandze, S., Fuchs, S., Pringle, K., & Sparks, M. D. (2025). Tariffs and Consumer Prices: Insights from Newly Matched Consumption-Trade Micro Data. FRB Atlanta Policy Hub Paper, 2025–01.

Bergstrand, J. H. (2013). Measuring the Effects of Endogenous Policies on Economic Integration. CESifo Economic Studies, 59(2), 199–222.

Boer, L. (2024). The Macroeconomic Consequences of Import Tariffs and Trade Policy Uncertainty. IMF Working Papers, 2024(013), 1. https://doi.org/ 10.5089/9798400265143.001

Canova, F., & Ciccarelli, M. (2013). Panel Vector Autoregressive Models: A Survey. CEPR Discussion Paper Series. https://api.semanticscholar.org/CorpusID:13206550

Carroll, D., & Hur, S. (2023). On the distributional effects of international tariffs. International Economic Review, 64(4), 1311–1346.

Cavallo, A., Gopinath, G., Neiman, B., & Tang, J. (2021). Tariff pass-through at the border and at the store: Evidence from us trade policy. American Economic Review: Insights, 3(1), 19– 34.

Comin, D., & Johnson, R. (2025). Tariffs are coming: How trade dynamics will shape aggregate demand and inflation. VOX EU; Centre for economic policy and research. https:// cepr.org/voxeu/columns/tariffs-are-coming-how-trade-dynamics-will-shape-aggregate-demand-and-inflation

Contractor, F. J. (2025). Assessing the economic impact of tariffs: adaptations by multinationals and traders to mitigate tariffs. Review of International Business and Strategy, 35(2/3), 190–213. https://doi.org/10.1108/ribs-01-2025-0013

Cuba-Borda, P. A., Queraltó, A., Reyes-Heroles, R. M., & Scaramucci, M. (2025). Trade Costs and Inflation Dynamics. International Finance Discussion Paper, 1411(2025), 1–51. https://doi.org/10.17016/ifdp.2025.1411

Driscoll, J. C., & Kraay, A. C. (1998). Consistent Covariance Matrix Estimation with Spatially Dependent Panel Data. Review of Economics and Statistics, 80(4), 549–560. https://doi.org/10.1162/003465398557825

Drukker, D. M. (2003). Testing for Serial Correlation in Linear Panel-data Models. The Stata Journal: Promoting Communications on Statistics and Stata, 3(2), 168–177. https://doi.org/10.1177/1536867x0300300206

Fetzer, T., & Schwarz, C. (2021). Tariffs and Politics: Evidence from Trump’s Trade Wars. The Economic Journal, 131(636), 1717–1741. https://doi.org/10.1093/ej/ueaa122

Furceri, D., Hannan, S. A., Ostry, J. D., & Rose, A. K. (2020). Are tariffs bad for growth? Yes, say five decades of data from 150 countries. Journal of Policy Modeling, 42(4), 850–859. https://doi.org/10.1016/j.jpolmod.2020.03.009

Gnocato, N., Montes-Galdón, C., & Stamato, G. (2025). Tariffs Across the Supply Chain. ECB Working Paper, 2025/3081, 1–37. https://doi.org/10.2139/ssrn.5371729

Goldberg, P. K., & Maggi, G. (1999). Protection for Sale: An Empirical Investigation. American Economic Review, 89(5), 1135–1155. https://doi.org/10.1257/aer.89.5.1135

Ha, J., Ayhan, K.M, Ohnsorge, F. (2023). One-Stop Source: A Global Database of Inflation. Policy Research Working Paper; No. 9737. World Bank, Washington, DC.

Hansen, B. E. (1999). Threshold effects in non-dynamic panels: Estimation, testing, and inference. Journal of Econometrics, 93(2), 345–368.https://doi.org/10.1016/ s0304-4076(99)00025-1

Hausman, J. A. (1978). Specification Tests in Econometrics. Econometrica, 46(6), 1251. https:// doi.org/10.2307/1913827

Hoechle, D. (2007). Robust Standard Errors for Panel Regressions with Cross-Sectional Dependence. The Stata Journal: Promoting Communications on Statistics and Stata, 7(3), 281–312. https://doi.org/10.1177/1536867x0700700301

Hoechle, D. (2018). XTSCC: Stata module to calculate robust standard errors for panels with cross-sectional dependence. Statistical Software Components S456787, Boston College Department of Economics, revised 03 Apr 2018.

Im, K. S., Pesaran, M. H., & Shin, Y. (2003). Testing for unit roots in heterogeneous panels. Journal of Econometrics, 115(1), 53–74. https://doi.org/10.1016/s0304-4076(03)00092-7

Jafari Samimi, A., Ghaderi, S., Hosseinzadeh, R., & Nademi, Y. (2012). Openness and inflation: New empirical panel data evidence. Economics Letters, 117(3), 573–577. https://doi.org/10.1016/j.econlet.2012.07.028

Jeanne, O., & Son, J. (2024). To what extent are tariffs offset by exchange rates? Journal of International Money and Finance, 142(103015). https://doi.org/10.1016/ j.jimonfin.2024.103015

Kelejian, H., & Piras, G. (2017). Chapter 15 - Panel Data Models. In H. Kelejian & G. Piras (Eds.), Spatial Econometrics (pp. 307–341). Academic Press. https://doi.org/https:// doi.org/10.1016/B978-0-12-813387-3.00015-9

Love, I., & Zicchino, L. (2006). Financial development and dynamic investment behavior: Evidence from panel VAR. The Quarterly Review of Economics and Finance, 46(2), 190–210. https://doi.org/10.1016/j.qref.2005.11.007

McKibbin, W. J., Noland, M., & Shuetrim, G. (2025). The Global Economic Effects of Trump’s 2025 Tariffs. Peterson Institute for International Economics, Working Paper No. 25-13. https://doi.org/10.2139/ssrn.5338095

Mikkelsen, P. (2025). Tariffs, Revenue, and Structural Change: A Comparative Historical Analysis of the Use of Tariffs to Replace Income Taxation in the USA. LUP Student Papers, Lund University Libraries, https://lup.lub.lu.se/student-papers/search/publication/9192163

Miller, J. W., Jin, Y. “Henry,” & Ortega, D. L. (2025). Shock and Awe: A Theoretical Framework and Data Sources for Studying the Impact of 2025 Tariffs on Global Supply Chains. Journal of Supply Chain Management, 61(3), 3–15. https://doi.org/10.1111/jscm.12350

Minton, R., & Somale, M. (2025). Detecting Tariff Effects on Consumer Prices in Real Time. FEDS Notes. Washington: Board of Governors of the Federal Reserve System, May 09, 2025, https://doi.org/10.17016/2380-7172.3786.

Nicita, A. (2009). The price effect of tariff liberalization: Measuring the impact on household welfare. Journal of Development Economics, 89(1), 19–27. https://doi.org/10.1016/ j.jdeveco.2008.06.009

Pal, H. (2025). Modeling the dynamic effects of tariffs on economic variables and trade policies. Future Business Journal, 11(1). https://doi.org/10.1186/s43093-025-00507-9

Pedroni, P. (1999). Critical Values for Cointegration Tests in Heterogeneous Panels with Multiple Regressors. Oxford Bulletin of Economics and Statistics, 61(s1), 653–670. https://doi.org/ 10.1111/1468-0084.61.s1.14

Pedroni, P. (2004). Panel Cointegration: Asymptotic and Finite Sample Properties of Pooled Time Series Tests with an Application to the PPP Hypothesis. Econometric Theory, 20(03), 597–625. https://doi.org/10.1017/ s0266466604203073

Pesaran, M. H. (2015). Testing Weak Cross-Sectional Dependence in Large Panels. Econometric Reviews, 34(6–10), 1089–1117. https://doi.org/10.1080/07474938.2014.956623

Pesaran, M. H. (2021). General diagnostic tests for cross-sectional dependence in panels. Empirical Economics, 60(1), 13–50. https://doi.org/10.1007/s00181-020-01875-7 Romer, D. (1993). Openness and Inflation: Theory and Evidence. The Quarterly Journal of Economics, 108(4), 869–903. https://doi.org/10.2307/2118453

Seo, M. H., Kim, S., & Kim, Y.-J. (2019). Estimation of dynamic panel threshold model using Stata. The Stata Journal: Promoting Communications on Statistics and Stata, 19(3), 685– 697. https://doi.org/10.1177/1536867x19874243

Sigmund, M., & Ferstl, R. (2021). Panel vector autoregression in R with the package panelvar. The Quarterly Review of Economics and Finance, 80, 693–720. https://doi.org/https://doi.org/10.1016/j.qref.2019.01.001

Temple, J. (2002). Openness, Inflation, and the Phillips Curve: A Puzzle. Journal of Money, Credit, and Banking, 34(2), 450–468. https://doi.org/10.1353/mcb.2002.0049

The World Bank (2025), World Development Indicators (database 1-2025) https://databank.worldbank.org/source/world-development-indicators

Trefler, D. (1993). Trade Liberalization and the Theory of Endogenous Protection: An Econometric Study of U.S. Import Policy. Journal of Political Economy, 101(1), 138–160. https://doi.org/10.1086/261869

Waller, C. J. (2025). The Effects of Tariffs on the Three I’s: Inflation, Inflation Persistence, and Inflation Expectations: A speech at Structural Shifts and Monetary Policy,” 2025 Bank of Korea International Conference, Bank of Korea, Seoul, South Korea., June 1, 2025. https://www.bis.org/review/r250604c.htm

Wooldridge, J. M. (2009). Econometrics: Panel Data Methods. In R. A. Meyers (Ed.), Encyclopedia of Complexity and Systems Science (pp. 2769–2792). Springer New York. https://doi.org/10.1007/978-0-387-30440-3_167

Wooldridge, J. M. (2015). Econometric Analysis of Cross Section and Panel Data [Hardcover] [2010] second Ed. Jeffrey M Wooldridge (2nd ed.). MIT Press.

Woutersen, T., & Hausman, J. A. (2019). Increasing the power of specification tests. Journal of Econometrics, 211(1), 166–175. https://doi.org/10.1016/j.jeconom.2018.12.012

Yang, R., An, X., Chen, Y., & Yang, X. (2023). The Knowledge Analysis of Panel Vector Autoregression: A Systematic Review. SAGE Open, 13(4), 21582440231215991. https://doi.org/10.1177/21582440231215991